Login / Signup

Cyanate Assimilation by the Alkaliphilic Cyanide-Degrading Bacterium Pseudomonas pseudoalcaligenes CECT5344: Mutational Analysis of the cyn Gene Cluster.

Lara Paloma SáezPurificación CabelloMaría Isabel IbáñezVíctor Manuel Luque-AlmagroMaría Dolores RoldánConrado Moreno-Vivián
Published in: International journal of molecular sciences (2019)
The alkaliphilic bacterium Pseudomonas pseudoalcaligenes CECT5344 can grow with cyanate, cyanide, or cyanide-containing industrial residues as the sole nitrogen source, but the assimilation of cyanide and cyanate takes place through independent pathways. Therefore, cyanide degradation involves a chemical reaction between cyanide and oxaloacetate to form a nitrile that is hydrolyzed to ammonium by the nitrilase NitC, whereas cyanate assimilation requires a cyanase that catalyzes cyanate decomposition to ammonium and carbon dioxide. The P. pseudoalcaligenes CECT5344 cynFABDS gene cluster codes for the putative transcriptional regulator CynF, the ABC-type cyanate transporter CynABD, and the cyanase CynS. In this study, transcriptional analysis revealed that the structural cynABDS genes constitute a single transcriptional unit, which was induced by cyanate and repressed by ammonium. Mutational characterization of the cyn genes indicated that CynF was essential for cynABDS gene expression and that nitrate/nitrite transporters may be involved in cyanate uptake, in addition to the CynABD transport system. Biodegradation of hazardous jewelry wastewater containing high amounts of cyanide and metals was achieved in a batch reactor operating at an alkaline pH after chemical treatment with hydrogen peroxide to oxidize cyanide to cyanate.
Keyphrases