Login / Signup

Genome integrity as a potential index of longevity in Ashkenazi Centenarian's families.

Mariana AndrawusGil Ben DavidIvana TerziyskaLital SharvitAviv BergmanNir BarzilaiSrilakshmi M RajDiddahally R GovindarajuGil Atzmon
Published in: GeroScience (2024)
The aging process, or senescence, is characterized by age-specific decline in physical and physiological function, and increased frailty and genomic changes, including mutation accumulation. However, the mechanisms through which changes in genomic architecture influence human longevity have remained obscure. Copy number variants (CNVs), an abundant class of genomic variants, offer unique opportunities for understanding age-related genomic changes. Here we report the spectrum of CNVs in a cohort of 670 Ashkenazi Jewish centenarians, their progeny, and unrelated controls. The average ages of these groups were 97.4 ± 2.8, 69.2 ± 9.2, and 66.5 ± 7.0 respectively. For the first time, we compared different size classes of CNVs, from 1 kB to 100 MB in size. Using a high-resolution custom Affymetrix array, targeting 44,639 genomic regions, we identified a total of 12,166, 22,188, and 10,285 CNVs in centenarians, their progeny, and control groups, respectively. Interestingly, the offspring group showed the highest number of unique CNVs, followed by control and centenarians. While both gains and losses were found in all three groups, centenarians showed a significantly higher average number of both total gains and losses relative to their controls (p < 0.0327, 0.0182, respectively). Moreover, centenarians showed a lower total length of genomic material lost, suggesting that they may maintain superior genomic integrity over time. We also observe a significance fold increase of CNVs among the offspring, implying greater genomic integrity and a putative mechanism for longevity preservation. Genomic regions that experienced loss or gains appear to be distributed across many sites in the genome and contain genes involved in DNA transcription, cellular transport, developmental pathways, and metabolic functions. Our findings suggest that the exceptional longevity observed in centenarians may be attributed to the prolonged maintenance of functionally important genes. These genes are intrinsic to specific genomic regions as well as to the overall integrity of the genomic architecture. Additionally, a strong association between longer CNVs and differential gene expression observed in this study supports the notion that genomic integrity could positively influence longevity.
Keyphrases