Control Synthesis of Tubular Hyper-Cross-Linked Polymers for Highly Porous Carbon Nanotubes.
Xiaoyan WangPan MuChong ZhangYu ChenJinghui ZengFeng WangJia Xing JiangPublished in: ACS applied materials & interfaces (2017)
Porous carbon nanotubes (PCNTs) have attracted considerable attention due to their large specific surface areas and unique one-dimensional (1D) structures. However, most of the reported synthetic strategies for PCNTs are complex and expensive. Herein, we present a self-templated, surfactant-free strategy for the synthesis of high-quality PCNTs with high surface area by direct carbonization of 1D hyper-cross-linked polymer nanotubes. The precursors of the 1D hyper-cross-linked polymer nanotubes were synthesized by FeCl3 catalyzed Friedel-Crafts alkylation of aromatic hydrocarbons with formaldehyde dimethyl acetal. It was found that the monomer concentration and mechanical agitation play crucial roles in the formation of the 1D tubular hyper-cross-linked polymer precursor. The tube size of the resulting PCNTs could be finely controlled by the aromatic monomers with different molecular sizes. The excellent electrochemical performances of the supercapacitors fabricated from the PCNTs demonstrate that these PCNTs are promising for the electrode materials of high-performance supercapacitors. This work highlights that the facile synthetic strategy for PCNTs would open up new avenues of porous carbon nanotube materials with promising applications.