Login / Signup

DNA four-way junction-driven dual-rolling circle amplification sandwich-type aptasensor for ultra-sensitive and specific detection of tumor-derived exosomes.

Zhuyang ZhaoSha YangXiaoqi TangLiu FengZishan DingZhiguo ChenXing LuoRuijia DengJing ShengShuang XieKai ChangMing Chen
Published in: Biosensors & bioelectronics (2023)
There is an urgent need to accurately quantify tumor-derived exosomes, which have emerged as promising non-invasive tumor diagnostic biomarkers. Herein, a bispecific-aptamer sandwich-type gold nanoparticle-modified electrochemical aptasensor was developed based on a four-way junction (4-WJ)-triggered dual rolling circle amplification (RCA)-assisted methylene blue (MB)/G-quadruplex strategy for extremely specific and sensitive exosome detection. This aptamer/exosome/aptamer sandwich-type design contained a CD63-specific aptamer and a cancerous mucin-1 (MUC1) protein-specific aptamer. The CD63 aptamer modified on a gold electrode captured exosomes, and then the sandwich-type aptasensor was formed with the addition of the MUC1 aptamer. The MUC1 aptamer's 3'-end sequence facilitated the formation of 4-WJ, assisted by a molecular beacon probe and a binary DNA probe. Subsequently, a dual-RCA reaction was triggered by binding to two cytosine-rich circle DNA templates at both ends of 4-WJ. Ultimately, dual-RCA products containing multiple G-quadruplex conformations were generated with the assistance of K + to trap abundant MB indicators and amplify electrochemical signals. The aptasensor exhibited high specificity, sensitivity, repeatability, and stability toward MCF-7-derived exosomes, with a detection limit of 20 particles/mL and a linear range of 1 × 10 2 to 1 × 10 7 particles/mL. Moreover, it showed excellent applicability in clinical settings to recover exosomes in normal human serum. Our aptasensor is anticipated to serve as a versatile platform for detecting various specific aptamer-based targets in biomedical and bioanalytical applications.
Keyphrases