Multi-Step Phase Transitions of Mn3 O4 During Galvanostatic Lithiation: An In Situ Transmission Electron Microscopic Investigation.
Guoguang XuXinyi ZhangMeinan LiuHongfei LiMeizhen ZhaoQingwen LiJinping ZhangYuegang ZhangPublished in: Small (Weinheim an der Bergstrasse, Germany) (2020)
For study of electrochemical reaction mechanisms at nanoscale, in situ electrochemical transmission electron microscopy (EC-TEM) exceeds many other methods due to its high temporal and spatial resolution. However, the limited amount of active materials used in previous in situ TEM studies prevents the model EC cells to operate in the constant-current (galvanostatic) charge/discharge mode that is required for accurate control of electrochemical processes. Herein, a new in situ EC-TEM technique is developed to investigate multi-step phase transitions of Mn3 O4 electrodes under the galvanostatic charge/discharge mode and constant-voltage discharge mode. In galvanostatic mode, the lithiation of Mn3 O4 undergoes multi-step phase transitions following a reaction pathway of Mn3 O4 + Li+ → LiMn3 O4 + Li+ → MnO + Li2 O → Mn + Li2 O. It is also found that lithium ions prefer to enter Mn3 O4 along the {101} direction to form LiMn3 O4 with the help of transitional boundary phase of Lix Mn3 O4 . These results are in sharp contrast to that obtained under a constant-voltage discharge mode, where only a single-step lithiation process of Mn3 O4 + Li+ → Mn + Li2 O is observed.