Supercritical lens can create a sub-diffraction-limited focal spot in the far field, providing a promising route for the realization of label-free super-resolution imaging through the point scanning mechanism. However, all of the reported supercritical lenses have circular shape configurations, and produce isotropic sub-diffraction-limited focal spots in the focal plane. Here, we propose and experientially demonstrate a sub-diffraction transverse optical needle by using an elliptical supercritical lens. Through breaking the circular symmetry and introducing ellipticity to the lens, a uniform sub-diffractive transverse optical needle with lateral length and width of 6λ/NA and 0.45λ/NA, respectively, was successfully created in the focal plane. Further, elliptical sector-shape cutting with an optimized apex angle of 60 degrees can lead to suppressed subsidiary focusing for improved uniformity and condensed field intensity of the transverse optical needle. The demonstration of sub-diffractive transverse optical needle with a high aspect ratio (length to width ratio) of 13:1 may find potential applications in line-scanning microscopy for video-rate label-free super-resolution imaging, and also enable advances in the fields from laser manufacturing to optical manipulation.