Login / Signup

Electroacupuncture Ameliorates Cognitive Impairment Through the Inhibition of NLRP3 Inflammasome Activation by Regulating Melatonin-Mediated Mitophagy in Stroke Rats.

Xiaoyong ZhongBin ChenZuanfang LiRuhui LinSu RuanFang WangHui LiangJing Tao
Published in: Neurochemical research (2022)
Previous studies found that electroacupuncture (EA) at the Shenting (DU24) and Baihui (DU20) acupoints alleviates cognitive impairment in cerebral ischemia-reperfusion (I/R) injury rats. Nonetheless, the mechanisms of the anti-inflammatory effects of EA are unclear. Cerebral I/R injury was induced in rats by middle cerebral artery occlusion (MCAO). Following I/R injury, the rats underwent EA therapy at the Shenting (DU24) and Baihui (DU20) acupoints for seven successive days. The Morris water maze test, magnetic resonance imaging (MRI) and molecular biology assays were utilized to assess the establishment of the rat stroke model with cognitive impairment and the therapeutic effect of EA. EA treatment of rats subjected to MCAO showed a significant reduction in infarct volumes accompanied by cognitive recovery, as observed in Morris water maze test outcomes. The possible mechanisms by which EA treatment attenuates cognitive impairment are by regulating endogenous melatonin secretion through aralkylamine N-acetyltransferase gene (AANAT, a rate-limiting enzyme of melatonin) synthesis in the pineal gland in stroke rats. Simultaneously, through melatonin regulation, EA exerts neuroprotective effects by upregulating mitophagy-associated proteins and suppressing reactive oxygen species (ROS)-induced NLRP3 inflammasome activation after I/R injury. However, melatonin receptor inhibitor (luzindole) treatment reversed these changes. The findings from this research suggested that EA ameliorates cognitive impairment through the inhibition of NLRP3 inflammasome activation by regulating melatonin-mediated mitophagy in stroke rats.
Keyphrases