Valorization of Cabbage Waste as a Feedstock for Microbial Polyhydroxyalkanoate Production: Optimizing Hydrolysis Conditions and Polyhydroxyalkanoate Production.
Jung Eun YangHye Sung JeonSeulbi KimYeong Yeol KimJong-Cheol KimHo Myeong KimIn Min HwangHae Woong ParkPublished in: Journal of agricultural and food chemistry (2024)
Establishing a platform for the bioconversion of waste resources into value-added compounds is critical for achieving a sustainable and eco-friendly economy. Herein, we produced polyhydroxyalkanoate via microbial fermentation using cabbage waste as a feedstock and metabolically engineered Escherichia coli . For this, the hydrolysis conditions of cabbage waste were optimized by focusing on parameters such as substrate and enzyme concentrations to enhance the saccharification efficiency. The phaABC operon, which encodes key enzymes responsible for polyhydroxyalkanoate biosynthesis in Ralstonia eutropha H16, was overexpressed in E. coli . Using cabbage hydrolysate as the feedstock, this engineered E. coli strain could produce poly(3-hydroxybutyrate) with a polymer content of 26.0 wt % of dry cell weight. Moreover, malic acid in cabbage hydrolysate significantly enhanced poly(3-hydroxybutyrate) production; the addition of 0.5 g/L malic acid markedly increased poly(3-hydroxybutyrate) content by 59.9%. This study demonstrates the potential of cabbage waste as a promising raw material for the microbial production of polyhydroxyalkanoate.