PAI-1 but Not PAI-2 Gene Deficiency Attenuates Ischemic Brain Injury After Experimental Stroke.
Eva-Verena GriemertKirsten Recarte PelzKristin EngelhardMichael K SchäferSerge Christian ThalPublished in: Translational stroke research (2018)
After stroke, secondary brain damage is influenced by the extent of fibrin clot formation. This is counteracted by the endogenous fibrinolysis. Of major interest are the key players of the fibrinolytic plasminogen activator system including the urokinase plasminogen activator (uPA), the tissue-type plasminogen activator (tPA), and their endogenous inhibitors plasminogen activator inhibitor 1 (PAI-1) and PAI-2. The role of PAI-1 in brain injury is well established, whereas the importance of PAI-2 is unknown at present. The objectives of the present were twofold: first, to characterize the time-dependent cerebral mRNA expression of the plasminogen activator system (PAS) after brain ischemia and second, to investigate the impact of PAI-1 and PAI-2 on brain infarct volume using gene-deficient mice. Adult C57Bl/6J mice were subjected to unilateral transient middle cerebral artery occlusion (MCAO) followed by reperfusion for 3, 24, 72, or 120 h. Quantitative PCR revealed that brain mRNA expression levels of the PAS components, and particularly of PAI-1 (237-fold) and PAI-2 (19-fold), peaked at 24 h after stroke. Accordingly, PAI-1 plasma activity was strongly increased. Brain infarct volume in TTC (2,3,5-triphenyltetrazolium chloride)-stained brain sections was significantly smaller 24 h after MCAO in PAI-1-deficient mice (- 31%), but not in PAI-2-deficient mice (- 6%). Thus, endogenous upregulation of PAI-1, but not of PAI-2, might contribute to increased brain damage after acute ischemic stroke. The present study therefore shows that PAI-2 is induced by brain ischemia, but does not play an important or relevant role for secondary brain damage after brain injury.
Keyphrases
- cerebral ischemia
- brain injury
- subarachnoid hemorrhage
- resting state
- white matter
- functional connectivity
- blood brain barrier
- acute ischemic stroke
- middle cerebral artery
- acute myocardial infarction
- heart failure
- young adults
- type diabetes
- long non coding rna
- signaling pathway
- internal carotid artery
- acute coronary syndrome
- single cell
- left ventricular