Oral Delivery of a Tetrameric Tripeptide Inhibitor of VEGFR1 Suppresses Pathological Choroid Neovascularization.
Valeria TaralloEmanuela IaccarinoValeria CicatielloRiccardo SannaMenotti RuvoSandro De FalcoPublished in: International journal of molecular sciences (2020)
Age-related macular degeneration (AMD) is the primary cause of blindness in advanced countries. Repeated intravitreal delivery of anti-vascular endothelial growth factor (VEGF) agents has represented an important advancement for the therapy of wet AMD with significative results in terms of blindness prevention and partial vision restore. Nonetheless, some patients are not responsive or do not attain significant visual improvement, intravitreal injection may cause serious complications and important side effects have been reported for the prolonged block of VEGF-A. In order to evaluate new anti-angiogenic strategies, we focused our attention on VEGF receptor 1 (VEGFR1) developing a specific VEGFR-1 antagonist, a tetrameric tripeptide named inhibitor of VEGFR 1 (iVR1). We have evaluated its anti-angiogenic activity in the preclinical model of AMD, the laser-induced choroid neovascularization (CNV). iVR1 is able to potently inhibit CNV when delivered by intravitreal injection. Surprisingly, it is able to significantly reduce CNV also when delivered by gavage. Our data show that the specific block of VEGFR1 in vivo represents a valid alternative to the block of VEGF-A and that the inhibition of the pathological neovascularization at ocular level is also possible by systemic delivery of compounds not targeting VEGF-A.
Keyphrases
- vascular endothelial growth factor
- age related macular degeneration
- endothelial cells
- end stage renal disease
- ejection fraction
- cancer therapy
- newly diagnosed
- chronic kidney disease
- signaling pathway
- stem cells
- electronic health record
- cell therapy
- risk factors
- drug delivery
- bone marrow
- optical coherence tomography
- cataract surgery