Perylenetetracarboxylic Diimide Composite Electrodes as Organic Cathode Materials for Rechargeable Sodium-Ion Batteries: A Joint Experimental and Theoretical Study.
Sebastian LieblJosef M GallmetzerDaniel WernerDogukan Hazar ApaydinThomas S HoferEngelbert PortenkirchnerPublished in: ACS omega (2024)
The organic semiconductor 3,4,9,10-perylenetetracarboxylic diimide (PTCDI), a widely used industrial pigment, has been identified as a diffusion-less Na-ion storage material, allowing for exceptionally fast charging/discharging rates. The elimination of diffusion effects in electrochemical measurements enables the assessment of interaction energies from simple cyclic voltammetry experiments through the theoretical work of Laviron and Tokuda. In this work, the two N-substituted perylenes, N , N '-dimethyl-3,4,9,10-perylenetetracarboxylic diimide (Me 2 PTCDI) and N , N '-diphenyl-3,4,9,10-perylenetetracarboxylic diimide (Ph 2 PTCDI), as well as the parent molecule 3,4,9,10-perylenetetracarboxylic diimide (H 2 PTCDI) are investigated as thin-film composite electrodes on carbon fibers for sodium-ion batteries. The composite electrodes are analyzed with Raman spectroscopy. Interaction parameters are extracted from cyclic voltammetry measurements. The stability and rate capability of the three PTCDI derivatives are examined through galvanostatic measurements in sodium-ion half-cell batteries and the influence of the interactions on those parameters is evaluated. In addition, self-consistent charge density function tight binding calculations of the different PTCDI systems interacting with graphite have been carried out. The results show that the binding motif displays notable deviations from an ideal ABA stacking, especially for the neutral state. In addition, data obtained for the electron-transfer integrals show that the difference in performance between different PTCDI thin-film batteries cannot be solely explained by the electron-transfer properties and other factors such as H-bonding have to be considered.
Keyphrases
- ion batteries
- electron transfer
- solid state
- raman spectroscopy
- reduced graphene oxide
- density functional theory
- gold nanoparticles
- machine learning
- molecular dynamics
- ionic liquid
- cell therapy
- molecular dynamics simulations
- electronic health record
- single cell
- bone marrow
- molecular docking
- deep learning
- wastewater treatment
- big data
- heavy metals
- single molecule
- high resolution
- mass spectrometry
- label free
- atomic force microscopy