Login / Signup

Cooling efficiency of vests with different cooling concepts over 8-hour trials.

Urša CiuhaTamara ValenčičIgor B Mekjavic
Published in: Ergonomics (2020)
As frequency and severity of heat waves are increasing, personal cooling systems are being considered as a tool to mitigate heat strain in workers in various occupational settings. This study assessed cooling capacities (C; W·h·m-2) of various commercially available vests using different cooling concepts. Measurements were conducted over 8 h in a climatic chamber (Ta: 35 °C, RH: 35 %) using a thermal manikin (Ts: 35 °C). Cooling power (P) and duration of efficient cooling (tc) determined the C value of each vest. Among the cooling concepts the active cooling vests were the most efficient, extracting 331 W·h·m-2, followed by the vests with phase change material (PCM) inserts, hybrid and evaporative vests, extracting a maximum of 164 W·h·m-2, 146 W·h·m-2 and 113 W·h·m-2, respectively. While some vests with PCM inserts provided intense but shorter cooling, evaporative vests provided mild but longer cooling throughout. Practitioner summary: The study assessed the cooling capacity of commercially available vests, using a thermal manikin. The vests present an affordable solution in various occupational settings where air-conditioning is not an option. A range of cooling capacities among different cooling concepts and vests of the same category were noted. Abbreviations: ACVs: air-cooled vests; LCVs: liquid-cooled vests; ECVs: evaporative cooling vests; HCVs: hybrid cooling vests; PCVs: phase-change cooling vests; PCM: phase change material; C: cooling capacity; Rt: thermal resistance; Re: evaporative resistance; Re (%): relative evaporative resistance; P: cooling power; Pmax: maximal cooling power; Pavg: average cooling power; tc: cooling duration; AUC: area under the curve; Ta: ambient temperature; RH: relative humidity; va: chamber air flow; Ts: manikin surface temperature.
Keyphrases
  • particulate matter
  • high intensity