Free Radical Generation from High-Frequency Electromechanical Dissociation of Pure Water.
Amgad R RezkHeba AhmedTarra L BrainJasmine O CastroMing K TanJulien LangleyNicholas CoxJoydip MondalWu LiMuthupandian AshokkumarLeslie Y YeoPublished in: The journal of physical chemistry letters (2020)
We reveal a unique mechanism by which pure water can be dissociated to form free radicals without requiring catalysts, electrolytes, or electrode contact by means of high-frequency nanometer-amplitude electromechanical surface vibrations in the form of surface acoustic waves (SAWs) generated on a piezoelectric substrate. The physical undulations associated with these mechanical waves, in concert with the evanescent electric field arising from the piezoelectric coupling, constitute half-wavelength "nanoelectrochemical cells" in which liquid is trapped within the SAW potential minima with vertical dimensions defined by the wave amplitude (∼10 nm), thereby forming highly confined polarized regions with intense electric field strengths that enable the breakdown of water. The ions and free radicals that are generated rapidly electromigrate under the high field intensity in addition to being convectively transported away from the cells by the bulk liquid recirculation generated by the acoustic excitation, thereby overcoming mass transport limitations that lead to ion recombination.
Keyphrases
- high frequency
- transcranial magnetic stimulation
- induced apoptosis
- cell cycle arrest
- ionic liquid
- endoplasmic reticulum stress
- photodynamic therapy
- signaling pathway
- cell death
- dna damage
- gene expression
- resting state
- oxidative stress
- dna repair
- pi k akt
- quantum dots
- single cell
- dna methylation
- cell proliferation
- solid state
- human health
- anaerobic digestion
- ion batteries