Login / Signup

Rethinking Heterometal Doping in Ligand-Protected Metal Nanoclusters.

Michael G TaylorGiannis Mpourmpakis
Published in: The journal of physical chemistry letters (2018)
Heterometal doping is a promising avenue toward tailoring properties of ligand-protected metal nanoclusters for specific applications. Though successful doping has been demonstrated in several structures, the underlying reasons for the dopant preference on occupying specific locations on the nanocluster with different concentrations remain unclear. In this study we apply our thermodynamic stability model, originally developed for ligand-protected monometallic nanoclusters, to rationalize the synthetic accessibility, dopant location, and concentrations of various heterometals on ligand-protected Au nanoclusters. Importantly, we demonstrate that the thermodynamic stability theory is a significant step forward in accurately describing doping effects on nanoclusters using first-principles calculations. With our computational predictions being in excellent agreement with a series of experiments, we introduce the thermodynamic stability theory as a new method for bimetallic nanocluster prediction.
Keyphrases