The Role of (H₂O)1-2 in the CH₂O + ClO Gas-Phase Reaction.
Junyao LiNarcisse T TsonaLin DuPublished in: Molecules (Basel, Switzerland) (2018)
Mechanism and kinetic studies have been carried out to investigate whether one and two water molecules could play a possible catalytic role on the CH₂O + ClO reaction. Density functional theory combined with the coupled cluster theory were employed to explore the potential energy surface and the thermodynamics of this radical-molecule reaction. The reaction proceeded through four different paths without water and eleven paths with water, producing H + HCO(O)Cl, Cl + HC(O)OH, HCOO + HCl, and HCO + HOCl. Results indicate that the formation of HCO + HOCl is predominant both in the water-free and water-involved cases. In the absence of water, all the reaction paths proceed through the formation of a transition state, while for some reactions in the presence of water, the products were directly formed via barrierless hydrogen transfer. The rate constant for the formation of HCO + HOCl without water is 2.6 × 10-16 cm³ molecule-1 s-1 at 298.15 K. This rate constant is decreased by 9-12 orders of magnitude in the presence of water. The current calculations hence demonstrate that the CH₂O + ClO reaction is impeded by water.