Login / Signup

Entropy-Driven Catalytic G-Quadruple Cycle Amplification Integrated with Ligases for Label-Free Detection of Single Nucleotide Polymorphisms.

Yunshan ZhangFang YangTuo HuangShijie XuJing YeLin WengYe HuHaowen HuangShuang LiDiming Zhang
Published in: Analytical chemistry (2024)
G-Quadruplex/thioflavin (G4/THT) has become a very promising label-free fluorescent luminescent element for nucleic acid detection due to its good programmability and compatibility. However, the weak fluorescence efficiency of single-molecule G4/THT limits its potential applications. Here, we developed an entropy-driven catalytic (EDC) G4 (EDC-G4) cycle amplification technology as a universal label-free signal amplification and output system by properly programming classical EDC and G4 backbone sequences, preintegrated ligase chain reaction (LCR) for label-free sensitive detection of single nucleotide polymorphisms (SNPs). First, the positive strand LCR enabled specific transduction and preliminary signal amplification from single-base mutation information to single-strand information. Subsequently, the EDC-G4 cycle amplification reaction was activated, accompanied by the production of a large number of G4/THT luminophores to output fluorescent signals. The EDC-G4 system was proposed to address the weak fluorescence of G4/THT and obtain a label-free fluorescence signal amplification. The dual-signal amplification effect enabled the LCR-EDC-G4 detection system to accurately detect mutant target (MT) at concentrations as low as 22.39 fM and specifically identify 0.01% MT in a mixed detection pool. Moreover, the LCR-EDC-G4 system was further demonstrated for its potential application in real biological samples. Therefore, this study not only contributes ideas for the development of label-free fluorescent biosensing strategies but also provides a high-performance and practical SNP detection tool in parallel.
Keyphrases
  • label free
  • single molecule
  • nucleic acid
  • sensitive detection
  • quantum dots
  • living cells
  • genome wide
  • helicobacter pylori
  • gene expression
  • loop mediated isothermal amplification
  • energy transfer
  • dna methylation