Alternative Ecosorbent for the Determination of Trihalomethanes in Aqueous Samples in SPME Mode.
Gustavo Sánchez-DuqueJuan José Lozada-CastroEmerson Luis Yoshio HaraMarco Tadeu GrassiMilton Rosero-MoreanoJhon Jairo Ríos-AcevedoPublished in: Molecules (Basel, Switzerland) (2022)
A new sorbent material based on modified clay with ionic liquid immobilized into an agarose film was developed as part of this study. It was applied to determine organochlorine pollutants, like disinfection byproducts, through headspace solid-phase microextraction-gas chromatography-electron capture detection (HS-SPME-GC-ECD). The disinfection byproducts determined in this study were used as model molecules because they were volatile compounds, with proven severe effects on human health. Their presence in aquatic environments is in trace concentrations (from pg L -1 to mg L -1 ). They are classified as emergent pollutants and their determination is a challenge for analytical chemists. The parameters which affected the extraction efficiency, i.e., number and distance between SPME discs, salt concentration, the temperature of extraction, extraction time, and desorption time, were optimized. A wide linear dynamic range of 10-1000 ng mL -1 and coefficients of determination better than 0.997 were achieved. The limits of detection and the limits of quantitation were found in the ranges of (1.7-3.7) ng mL -1 and (5.6-9.9) ng mL -1 , respectively. The precision, expressed as relative standard deviation (RSD), was better than 8%. The developed sorbent exhibits good adsorption affinity. The applicability of the proposed methodology for the analysis of trihalomethanes in environmental and water samples showed recoveries in the range of 86-95%. Finally, the newly created method fully complied with the principles of green chemistry. Due to the fact that the sorbent holder was made of agarose, which is a wholly biodegradable material, sorbent clay is a widespread material in nature. Moreover, the reagents intercalated into the montmorillonite are new green solvents, and during the whole procedure, low amounts of organic solvents were used.
Keyphrases
- solid phase extraction
- gas chromatography
- ionic liquid
- tandem mass spectrometry
- high performance liquid chromatography
- mass spectrometry
- molecularly imprinted
- liquid chromatography tandem mass spectrometry
- gas chromatography mass spectrometry
- liquid chromatography
- drinking water
- human health
- simultaneous determination
- high resolution mass spectrometry
- risk assessment
- room temperature
- heavy metals
- high resolution
- capillary electrophoresis
- drug delivery
- ms ms
- loop mediated isothermal amplification
- label free
- gold nanoparticles