Login / Signup

Retinal oxygen kinetics imaging and analysis (ROKIA) based on the integration and fusion of structural-functional imaging.

Ximeng FengZi JinZixia ZhouMengdi GaoChunxia JiangYicheng HuYanye LuJinying LiQiushi RenChuanqing Zhou
Published in: Biomedical optics express (2022)
The retina is one of the most metabolically active tissues in the body. The dysfunction of oxygen kinetics in the retina is closely related to the disease and has important clinical value. Dynamic imaging and comprehensive analyses of oxygen kinetics in the retina depend on the fusion of structural and functional imaging and high spatiotemporal resolution. But it's currently not clinically available, particularly via a single imaging device. Therefore, this work aims to develop a retinal oxygen kinetics imaging and analysis (ROKIA) technology by integrating dual-wavelength imaging with laser speckle contrast imaging modalities, which achieves structural and functional analysis with high spatial resolution and dynamic measurement, taking both external and lumen vessel diameters into account. The ROKIA systematically evaluated eight vascular metrics, four blood flow metrics, and fifteen oxygenation metrics. The single device scheme overcomes the incompatibility of optical design, harmonizes the field of view and resolution of different modalities, and reduces the difficulty of registration and image processing algorithms. More importantly, many of the metrics (such as oxygen delivery, oxygen metabolism, vessel wall thickness, etc.) derived from the fusion of structural and functional information, are unique to ROKIA. The oxygen kinetic analysis technology proposed in this paper, to our knowledge, is the first demonstration of the vascular metrics, blood flow metrics, and oxygenation metrics via a single system, which will potentially become a powerful tool for disease diagnosis and clinical research.
Keyphrases
  • high resolution
  • blood flow
  • gene expression
  • healthcare
  • machine learning
  • oxidative stress
  • optical coherence tomography
  • mass spectrometry
  • magnetic resonance
  • social media
  • health information
  • drug induced