Login / Signup

Movement-synchronized cerebellum rhythm coordinates multi-joint movements in young and elderly adults.

Keisuke HirataHiroki HanawaTaku MiyazawaYohei Masugi
Published in: Biology open (2023)
Rhythmic limb multi-joint movement like locomotion is controlled by intralimb coordination. Intralimb coordination changes entail immediate alterations in movement patterns and be related with cerebellum function. Synchronized cerebellum activity has known to modulate the frequency of walking, but not known the effect of only intralimb coordination. The purpose of this study was to reveal the effect of synchronized and unsynchronized cerebellum activity on the coordination of multi-joint movements of the unilateral leg in young and elderly people. To achieve our purpose, we applied synchronized and unsynchronized cerebellum transcranial alternating current stimulation during cyclic unilateral multi-joint movement by visual tracking task. The results showed that the reduction in comprehensive synchrony between targets and movements through trials had no significant differences under all stimulus conditions in young and elderly people. However, the reduction in variation of synchronization through trials was significantly smaller under the synchronized transcranial alternating current stimulation condition in both young and elderly groups. Variation of synchronization was remarkably reduced under the synchronized transcranial alternating current stimulation condition for the elderly group. This study showed that movement-synchronized cerebellum activity contributes to reducing fluctuations in movement synchrony by coordinating unilateral multi-joint movements. Moreover, this reduction was remarkable in the elderly group.
Keyphrases
  • middle aged
  • heart rate
  • blood pressure