Login / Signup

Nanobubbles: An Effective Way to Study Gas-Generating Catalysis on a Single Nanoparticle.

Shuping LiYing DuTing HeYangbin ShenChuang BaiFandi NingXin HuWenhui WangShaobo XiXiaochun Zhou
Published in: Journal of the American Chemical Society (2017)
Gas-generating catalysis is important to many energy-related research fields, such as photocatalytic water splitting, water electrolysis, etc. The technique of single-nanoparticle catalysis is an effective way to search for highly active nanocatalysts and elucidate the reaction mechanism. However, gas-generating catalysis remains difficult to investigate at the single-nanoparticle level because product gases, such as H2 and O2, are difficult to detect on an individual nanoparticle. Here, we successfully find that nanobubbles can be used to study the gas-generating catalysis, i.e., H2 generation from formic acid dehydrogenation on a single Pd-Ag nanoplate, with a high time resolution (50 ms) via dark-field microscopy. The research reveals that the nanobubble evolution process includes nucleation time and lifetime. The nucleation rate of nanobubbles is proportional to the catalytic activity of a single nanocatalyst. The relationship between the catalytic activity and the nucleation rate is quantitatively described by a mathematical model, which shows that an onset reaction rate (ronset) exists for the generation of nanobubbles on a single Pd-Ag nanoplate. The research also reveals that a Pd-Ag nanoplate with larger size usually has a higher activity. However, some large-sized ones still have low activities, indicating the size of the Pd-Ag nanoplate is not the only key factor for the activity. Notablely, further research shows that Pd content is the key factor for the activity of single Pd-Ag nanoplates with similar size. The methodology and knowledge acquired from this research are also applicable to other important gas-generating catalysis reactions at the single-nanoparticle level.
Keyphrases
  • visible light
  • quantum dots
  • room temperature
  • highly efficient
  • iron oxide
  • healthcare
  • single molecule
  • multiple sclerosis
  • mass spectrometry
  • high throughput
  • gold nanoparticles