Cr(VI) Reduction by Siderophore Alone and in Combination with Reduced Clay Minerals.
Donglei ZhangXiaolei LiuDongyi GuoGaoyuan LiJunhua QuHailiang DongPublished in: Environmental science & technology (2022)
Siderophores and iron-containing clays are known to influence the transformation of chromium in the environment. The role of clays in hexavalent chromium [Cr(VI)] reduction has been reported extensively. However, the mechanisms of Cr(VI) reduction by siderophores and their combination with iron-bearing clays are poorly known. Herein, we report the kinetics and products of Cr(VI) reduction by a siderophore alone or in combination with reduced clays. Results showed that Cr(VI) reduction by a tri-hydroxamate siderophore─desferrioxamine B (DFOB)─at a pH of 6 was achieved by one-electron transfer via the formation of Cr(V) intermediate. The formed Cr(V) was further reduced to organically complexed Cr(III). The Cr(VI) reduction rate and extent in the presence of both DFOB and reduced clays unexpectedly decreased relative to that with reduced clays alone, despite both serving as Cr(VI) reductants. The interaction between DFOB and clays (e.g., adsorption/intercalation, dissolution, and/or oxidation) was primarily responsible for Cr(VI) reduction inhibition. The extent of inhibition increased at higher DFOB concentrations in the presence of iron-rich nontronite but decreased in the presence of iron-poor montmorillonite, which may be related to their different Cr(VI) reduction mechanisms. This study highlights the importance of siderophores in chromium transformation and its impact on the reactivity of iron-bearing clays toward heavy metal reduction in the environment.