Login / Signup

Corn protein has greater concentrations of digestible amino acids and energy than low-oil corn distillers dried grains with solubles when fed to pigs but does not affect the growth performance of weanling pigs.

Jessica P AcostaCharmaine D EspinosaNeil W JaworskiHans H Stein
Published in: Journal of animal science (2021)
Three experiments were conducted to test the hypothesis that standardized ileal digestibility (SID) of amino acids (AA) and digestible energy (DE) and metabolizable energy (ME) in a new source of corn protein are greater than in corn distillers dried grains with solubles (DDGS) and that corn protein may be included in diets for weanling pigs. In experiment 1, the SID of AA was determined in two sources of DDGS (DDGS-1 and DDGS-2) and in corn protein. Results indicated that SID of most AA was greater (P < 0.05) in DDGS-2 and corn protein than in DDGS-1, but corn protein contained more digestible AA than both sources of DDGS. In experiment 2, the DE and ME in corn, the two sources of DDGS, and corn protein were determined. Results demonstrated that DE (dry matter basis) in corn protein was greater (P < 0.05) than in corn, but ME (dry matter basis) was not different between corn and corn protein. However, DE and ME in corn (dry matter basis) were greater (P < 0.05) than in DDGS-1 and DDGS-2. In experiment 3, 160 weanling pigs were allotted to four treatments in phases 1 and 2 and a common diet in phase 3. Corn protein was included at 5% to 10% in phases 1 and 2 at the expense of plasma protein and enzyme-treated soybean meal. Results indicated that although differences in average daily gain and gain to feed ratio were observed in phase 1, no differences among treatments were observed for the overall experimental period. In conclusion, the concentration of digestible AA is greater in corn protein than in DDGS; DE and ME in corn protein are also greater than in DDGS; and up to 10% corn protein may be included in phase 1 and phase 2 diets for weanling pigs.
Keyphrases
  • amino acid
  • protein protein
  • binding protein
  • small molecule
  • weight loss