Efficient Triplet-Triplet Annihilation Upconversion in Solution and Hydrogel Enabled by an S-T Absorption Os(II) Complex Dyad with an Elongated Triplet Lifetime.
Yaxiong WeiYuanming LiZefeng LiXinsheng XuXiaosong CaoXiaoguo ZhouChuluo YangPublished in: Inorganic chemistry (2021)
A new Os(II) complex dyad featuring direct singlet-to-triplet (S-T) absorption and intramolecular triplet energy transfer (ITET) with lifetime up to 7.0 μs was designed to enhance triplet energy transfer efficiency during triplet-triplet annihilation upconversion (TTA-UC). By pairing with 9,10-bis(phenylethynyl)anthracene (BPEA) as a triplet acceptor, intense upconverted green emission in deaerated solution was observed with unprecedented TTA-UC emission efficiency up to 26.3% (with a theoretical maximum efficiency of 100%) under photoexcitation in the first biological transparency window (650-900 nm). Meanwhile, a 7.1% TTA-UC emission efficiency was acquired in an air-saturated hydrogel containing the photosensitizer and a newly designed hydrophilic BPEA derivative. This ITET mechanism would inspire further development of a highly efficient TTA-UC system for biological fields and renewable energy production.