Login / Signup

In Vitro Nociceptor Neuroplasticity Associated with In Vivo Opioid-Induced Hyperalgesia.

Eugen V KhomulaDioneia AraldiJon D Levine
Published in: The Journal of neuroscience : the official journal of the Society for Neuroscience (2019)
Opioid-induced hyperalgesia (OIH) is a serious adverse event produced by opioid analgesics. Lack of an in vitro model has hindered study of its underlying mechanisms. Recent evidence has implicated a role of nociceptors in OIH. To investigate the cellular and molecular mechanisms of OIH in nociceptors, in vitro, subcutaneous administration of an analgesic dose of fentanyl (30 μg/kg, s.c.) was performed in vivo in male rats. Two days later, when fentanyl was administered intradermally (1 μg, i.d.), in the vicinity of peripheral nociceptor terminals, it produced mechanical hyperalgesia (OIH). Additionally, 2 d after systemic fentanyl, rats had also developed hyperalgesic priming (opioid-primed rats), long-lasting nociceptor neuroplasticity manifested as prolongation of prostaglandin E2 (PGE2) hyperalgesia. OIH was reversed, in vivo, by intrathecal administration of cordycepin, a protein translation inhibitor that reverses priming. When fentanyl (0.5 nm) was applied to dorsal root ganglion (DRG) neurons, cultured from opioid-primed rats, it induced a μ-opioid receptor (MOR)-dependent increase in [Ca2+]i in 26% of small-diameter neurons and significantly sensitized (decreased action potential rheobase) weakly IB4+ and IB4- neurons. This sensitizing effect of fentanyl was reversed in weakly IB4+ DRG neurons cultured from opioid-primed rats after in vivo treatment with cordycepin, to reverse of OIH. Thus, in vivo administration of fentanyl induces nociceptor neuroplasticity, which persists in culture, providing evidence for the role of nociceptor MOR-mediated calcium signaling and peripheral protein translation, in the weakly IB4-binding population of nociceptors, in OIH.SIGNIFICANCE STATEMENT Clinically used μ-opioid receptor agonists such as fentanyl can produce hyperalgesia and hyperalgesic priming. We report on an in vitro model of nociceptor neuroplasticity mediating this opioid-induced hyperalgesia (OIH) and priming induced by fentanyl. Using this model, we have found qualitative and quantitative differences between cultured nociceptors from opioid-naive and opioid-primed animals, and provide evidence for the important role of nociceptor μ-opioid receptor-mediated calcium signaling and peripheral protein translation in the weakly IB4-binding population of nociceptors in OIH. These findings provide information useful for the design of therapeutic strategies to alleviate OIH, a serious adverse event of opioid analgesics.
Keyphrases