Ionic Liquid-Gated Near-Infrared Polymer Phototransistors and Their Persistent Photoconductivity Application in Optical Memory.
Jun SunJingzan JiangYadan DengYunuan WangLing LiZhidong LouYan-Bing HouFeng TengYufeng HuPublished in: ACS applied materials & interfaces (2022)
Organic phototransistors (OPTs) based on polymers have attracted substantial attention due to their excellent signal amplification, significant noise reduction, and solution process. Recently, the near-infrared (NIR) detection becomes urgent for OPTs with the increased demand for biomedicine, medical diagnostics, and health monitoring. To achieve this goal, a low working voltage of the OPTs is highly desirable. Therefore, the traditional dielectric gate can be replaced by an electrolyte gate to form electrolyte-gated organic phototransistors (EGOPTs), which are not only able to work at voltages below 1.0 V but also are biocompatible. PCDTPT, one of the most popular narrow band gap donor-acceptor copolymer, has been rarely studied in EGOPTs. In this work, an organic NIR-sensitive EGOPT based on PCDTPT is demonstrated with the detectivity of 7.08 × 10 11 Jones and the photoresponsivity of 3.56 A/W at a low operating voltage. In addition, an existing persistent photoconductivity (PPC) phenomenon was also observed when the device was exposed to air. The PPC characteristic of the EGOPT in air has been used to achieve a phototransistor memory, and the gate bias can directly eliminate the PPC as an erasing operation. This work reveals the underlying mechanism of the electrolyte-gated organic phototransistor memories and broadens the application of the EGOPTs.