Login / Signup

Characterization of Environmental Levels of Pesticide Residues in Household Air and Dust Samples near a Bioenergy Plant Using Treated Seed as Feedstock.

Jabeen TaibaEleanor G RoganDaniel D SnowChandran AchutanMuhammad Zahid
Published in: International journal of environmental research and public health (2023)
Exposure to neonicotinoid insecticides is associated with adverse human health outcomes. There is environmental contamination in Saunders County, Nebraska, due to the accumulation of fungicides and insecticides from a now-closed ethanol plant using seed corn as stock. A pilot study quantified environmental contamination in nearby houses from residual pesticides by measuring dust and air (indoor/outdoor) concentrations of neonicotinoids and fungicides at the study site (households within two miles of the plant) and control towns (20-30 miles away). Air (SASS ® 2300 Wetted-Wall Air Sampler) and surface dust (GHOST wipes with 4 × 4-inch template) samples were collected from eleven study households and six controls. Targeted analysis quantified 13 neonicotinoids, their transformation products and seven fungicides. Sample extracts were concentrated using solid phase extraction (SPE) cartridges, eluted with methanol and evaporated. Residues were re-dissolved in methanol-water (1:4) prior to analysis, with an Acquity H-Class ultraperformance liquid chromatograph (UPLC) and a Xevo triple quadrupole mass spectrometer. We compared differences across chemicals in air and surface dust samples at the study and control sites by dichotomizing concentrations above or below the detection limit, using Fisher's exact test. A relatively higher detection frequency was observed for clothianidin and thiamethoxam at the study site for the surface dust samples, similarly for thiamethoxam in the air samples. Our results suggest airborne contamination (neonicotinoids and fungicides) from the ethanol facility at houses near the pesticide contamination.
Keyphrases