Relaxation dynamics of two interacting electrical double-layers in a 1D Coulomb system.
Lucas VarelaSergio AndrausEmmanuel TrizacGabriel TéllezPublished in: Journal of physics. Condensed matter : an Institute of Physics journal (2021)
We consider an out-of-equilibrium one-dimensional model for two electrical double-layers. With a combination of exact calculations and Brownian dynamics simulations, we compute the relaxation time (τ) for an electroneutral salt-free suspension, made up of two fixed colloids, withNneutralizing mobile counterions. ForNodd, the two double-layers never decouple, irrespective of their separationL; this is the regime of like-charge attraction, whereτexhibits a diffusive scaling inL2for largeL. On the other hand, for evenN,Lno longer is the relevant length scale for setting the relaxation time; this role is played by the Bjerrum length. This leads to distinctly different dynamics: forNeven, thermal effects are detrimental to relaxation, increasingτ, while they accelerate relaxation forNodd. Finally, we also show that the mean-field theory is recovered for largeNand moreover, that it remains an operational treatment down to relatively small values ofN(N> 3).