Solid state electrolytes are receiving significant interest due to the prospect of improved safety, however, addressing the incidence and consequence of internal short circuits remains an important issue. Herein, a battery based on a LiI-LiI(HPN) 2 solid state electrolyte demonstrated self-healing after internal shorting where the cells recovered and continued to cycle effectively. The functional rechargeable electrochemistry of the self-forming Li/I 2 -based battery was investigated through interfacial modification by inclusion of Li metal (at the negative interface), and/or fabricated carbon nanotube substrates at the positive interface. A cell design with lithium metal at the negative and a carbon substrate at the positive interface produced Coulombic efficiencies > 90% over 60 cycles. Finally, the beneficial effects of moderately elevated temperature were established where a 10°C temperature increase led to ~5X lower resistance.