Login / Signup

Learning the effective order of a hypergraph dynamical system.

Leonie NeuhäuserMichael ScholkemperFrancesco TudiscoMichael T Schaub
Published in: Science advances (2024)
Dynamical systems on hypergraphs can display a rich set of behaviors not observable for systems with pairwise interactions. Given a distributed dynamical system with a putative hypergraph structure, an interesting question is thus how much of this hypergraph structure is actually necessary to faithfully replicate the observed dynamical behavior. To answer this question, we propose a method to determine the minimum order of a hypergraph necessary to approximate the corresponding dynamics accurately. Specifically, we develop a mathematical framework that allows us to determine this order when the type of dynamics is known. We use these ideas in conjunction with a hypergraph neural network to directly learn the dynamics itself and the resulting order of the hypergraph from both synthetic and real datasets consisting of observed system trajectories.
Keyphrases
  • neural network
  • density functional theory
  • molecular dynamics
  • rna seq