Login / Signup

Highly Efficient Lithium Recovery from Pre-Synthesized Chlorine-Ion-Intercalated LiAl-Layered Double Hydroxides via a Mild Solution Chemistry Process.

Ying SunRongping YunYufeng ZangMin PuXu Xiang
Published in: Materials (Basel, Switzerland) (2019)
Lithium extraction from salt lake brine is critical for satisfying the increasing demand of a variety of lithium products. We report lithium recovery from pre-synthesized LiAl-layered double hydroxides (LDHs) via a mild solution reaction. Lithium ions were released from solid LiAl-LDHs to obtain a lithium-bearing solution. The LiAl-LDHs phase was gradually transformed into a predominantly Al(OH)3 phase with lithium recovery to the aqueous solution. The lithium recovery percentage and the concentration of the lithium-bearing solution were dependent on the crystallinity of LiAl-LDHs, the initial concentration of the LiAl-LDHs-1 slurry, the reaction temperature, and the reaction time. Under optimized conditions, the lithium recovery reached 86.2% and the Li+ concentration in the filtrate is 141.6 mg/L. Interestingly, no aluminum ions were detected in the filtrate after solid-liquid separation with high crystallinity LiAl-LDHs, which indicated the complete separation of lithium and aluminum in the liquid and solid phases, respectively. The 27Al NMR spectra of the solid products indicate that lithium recovery from the lattice vacancies of LiAl-LDHs affects the AlO6 coordination in an octahedral configuration of the ordered Al(OH)3 phase. The XPS O 1s spectra show that the Oad peak intensity increased and the OL peak intensity decreased with the increasing lithium recovery, which indicated that the Al-OH bond was gradually formed and the metal-oxygen-metal bond was broken.
Keyphrases
  • solid state
  • highly efficient
  • aqueous solution
  • high intensity
  • mass spectrometry
  • ionic liquid
  • liquid chromatography
  • density functional theory