Login / Signup

Quasiparticle Levels at Large Interface Systems from Many-Body Perturbation Theory: The XAF-GW Method.

Fengyuan XuanYifeng ChenSu Ying Quek
Published in: Journal of chemical theory and computation (2019)
We present a fully ab initio approach based on many-body perturbation theory in the GW approximation to compute the quasiparticle levels of large interface systems without significant covalent interactions between the different components of the interface (meaning that the different components can be separated without the creation of dangling bonds). The only assumption in our approach is that the polarizability matrix (chi) of the interface can be given by the sum of the polarizability matrices of individual components of the interface. We show analytically, using a two-state hybridized model, that this assumption is valid even in the presence of interface hybridization to form bonding and antibonding states up to first order in the overlap matrix elements involved in the hybridization. We validate our approach by showing that the band structure obtained in our method is almost identical to that obtained using a regular GW calculation for bilayer black phosphorus, where interlayer hybridization is significant. Significant savings in computational time and memory are obtained by computing chi only for the smallest subunit cell of each component and expanding (unfolding) the chi matrix to that in the unit cell of the interface. To treat interface hybridization, the full wave functions of the interface are used in computing the self-energy. We thus call the method XAF-GW (X, eXpand-chi; A, Add-chi; F, Full wave functions). Compared to GW-embedding type approaches in the literature, the XAF-GW approach is not limited to specific screening environments or to nonhybridized interface systems. XAF-GW can also be applied to systems with different dimensionalities, as well as to Moire superlattices such as in twisted bilayers. We illustrate the generality and usefulness of our approach by applying it to self-assembled PTCDA monolayers on Au(111) and Ag(111) and PTCDA monolayers on graphite-supported monolayer WSe2. In all cases, the predicted HOMO and LUMO levels agree well with experimental measurements.
Keyphrases
  • single cell
  • stem cells
  • systematic review
  • cell therapy
  • palliative care
  • bone marrow
  • gold nanoparticles
  • reduced graphene oxide