Assessment of Narrow-Band Imaging Algorithm for Video Capsule Endoscopy Based on Decorrelated Color Space for Esophageal Cancer: Part II, Detection and Classification of Esophageal Cancer.
Yu-Jen FangChien-Wei HuangRiya KarmakarArvind MukundanYu-Ming TsaoKai-Yao YangHsiang-Chen WangPublished in: Cancers (2024)
Esophageal carcinoma (EC) is a prominent contributor to cancer-related mortality since it lacks discernible features in its first phases. Multiple studies have shown that narrow-band imaging (NBI) has superior accuracy, sensitivity, and specificity in detecting EC compared to white light imaging (WLI). Thus, this study innovatively employs a color space linked to décor to transform WLIs into NBIs, offering a novel approach to enhance the detection capabilities of EC in its early stages. In this study a total of 3415 WLI along with the corresponding 3415 simulated NBI images were used for analysis combined with the YOLOv5 algorithm to train the WLI images and the NBI images individually showcasing the adaptability of advanced object detection techniques in the context of medical image analysis. The evaluation of the model's performance was based on the produced confusion matrix and five key metrics: precision, recall, specificity, accuracy, and F1-score of the trained model. The model underwent training to accurately identify three specific manifestations of EC, namely dysplasia, squamous cell carcinoma (SCC), and polyps demonstrates a nuanced and targeted analysis, addressing diverse aspects of EC pathology for a more comprehensive understanding. The NBI model effectively enhanced both its recall and accuracy rates in detecting dysplasia cancer, a pre-cancerous stage that might improve the overall five-year survival rate. Conversely, the SCC category decreased its accuracy and recall rate, although the NBI and WLI models performed similarly in recognizing the polyp. The NBI model demonstrated an accuracy of 0.60, 0.81, and 0.66 in the dysplasia, SCC, and polyp categories, respectively. Additionally, it attained a recall rate of 0.40, 0.73, and 0.76 in the same categories. The WLI model demonstrated an accuracy of 0.56, 0.99, and 0.65 in the dysplasia, SCC, and polyp categories, respectively. Additionally, it obtained a recall rate of 0.39, 0.86, and 0.78 in the same categories, respectively. The limited number of training photos is the reason for the suboptimal performance of the NBI model which can be improved by increasing the dataset.
Keyphrases
- deep learning
- squamous cell carcinoma
- machine learning
- high resolution
- healthcare
- cardiovascular disease
- optical coherence tomography
- coronary artery disease
- radiation therapy
- convolutional neural network
- risk factors
- young adults
- real time pcr
- cardiovascular events
- cancer therapy
- photodynamic therapy
- structural basis
- case control