Login / Signup

Sustainable Advanced Fenton-like Catalysts Based on Mussel-Inspired Magnetic Cellulose Nanocomposites to Effectively Remove Organic Dyes and Antibiotics.

Guihua WangJun XiangJiayou LinLin XiangSheng ChenBin YanHaojun FanSuojiang ZhangXingwei Shi
Published in: ACS applied materials & interfaces (2020)
The development of biocompatible advanced Fenton-like catalysts with high catalytic activity, good stability, and recyclability using sustainable biosourced materials is of considerable interest yet remains a challenge. Herein, we develop a novel mussel-inspired magnetic cellulose nanocomposite (MCNF/PDA) with carboxylated cellulose nanofibers (CNF) and explore as advanced Fenton-like catalysts to effectively degrade organic dyes and antibiotics. The MCNF/PDA nanocomposites were prepared by anchoring Fe3O4 nanoparticles to CNFs via chemical deposition followed with PDA coatings. The composites exhibit an excellent degradation activity toward methylene blue (MB) in a wide pH range of 2-10 in the presence of H2O2 and have a maximum degradation capacity of 2265 mg/g. Moreover, the MCNF/PDA nanocatalysts are highly stable and can be easily regenerated. After four cycles, it can still achieve the removal rate as high as 95%. In addition, the MCNF/PDA nanocatalysts also demonstrate an excellent degradation performance to the antibiotic tetracycline. This work provides new insights into fabricating biocompatible cellulosic-based advanced Fenton catalysts with sustainable biomass-derived materials to efficiently remove organic pollutants from wastewater.
Keyphrases