Temperature and oxidation-sensitive dioleoylphosphatidylethanolamine liposome stabilized with poly(ethyleneimine)/(phenylthio)acetic acid ion pair.
Fanyu ZhaoGarima SharmaJin-Chul KimPublished in: Journal of biomaterials science. Polymer edition (2022)
Temperature and oxidation-sensitive liposomes were prepared by stabilizing dioleoylphosphatidylethanolamine (DOPE) bilayers with the ion pair of poly(ethyleneimine)/(phenylthio)acetic acid (PEI/PTA). An upper critical solution temperature (UCST) behavior was observed when PEI/PTA ion pair was suspended in an aqueous solution. It was observed that the UCST increased with increasing PTA content. The ion pair was self-assembled into nanospheres owing to its amphiphilic property which was confirmed by transmission electron microscopy. The FT-IR spectroscopic spectrum showed that the ion pair formed a salt bridge between the amino group and the carboxyl group and the PTA content in the ion pair was readily oxidized by H 2 O 2 . Further, DOPE liposomal membranes could be stabilized with PEI/PTA ion pair. Due to the amphiphilic property, the ion pair played a role as a stabilizer for the formation of DOPE liposomes. The liposome released its payload in a temperature-responsive manner, possibly because when the temperature is raised, the ion pair loses its amphiphilic property and can be detached from the liposomal membrane. The liposome was also oxidation-responsive in terms of release, possibly because the amphiphilic property of the ion pair disappears when the PTA is oxidized.