Login / Signup

The double-edged sword of potassium and sodium fertilization in xylem embolism resistance of two Eucalyptus species under drought stress.

Nikolas Souza MateusVictoria Perez-MartinezJose LavresDavid T TissueBrendan Choat
Published in: Journal of experimental botany (2024)
Sodium (Na+) is a beneficial element for most plants that may replace potassium (K+) in osmoregulatory process to a certain extent, increasing plant water-use efficiency. Thus, understanding coordinated mechanisms underlying the combined use of K+ and Na+ in tree drought tolerance is a key challenge for the agricultural industry in dealing with forest productivity and water limitations. A pot experiment with three ratios of K/Na (K-supplied, partial K replacement by Na and K-deficient plants) and two water regimes, well-watered (W+) and water-stressed (W-), was conducted on saplings of two Eucalyptus species with contrasting drought sensitivities. We evaluated the point of stomatal closure (Pgs90), xylem embolism thresholds (P12, P50, P88), hydraulic safety margin (HSM), leaf gas exchange (A, E, gs and dark respiration), leaf water potential (ΨPD and ΨMD), long-term water use efficiency (WUEL) and total dry mass (TDM). Partial K replacement by Na increased the leaf gas exchange, WUEL and TDM, while Pgs90, P12, P50, P88 and ΨMD decreased (more negative), compared to plants exclusively supplied with K and K-deficient plants of both species. Fertilized plants had narrower HSMs than K-deficient plants, indicating that these Eucalyptus species adopt the functional adaptive strategy of operating close to their hydraulic limits to maximize carbon uptake while increasing the risk of hydraulic failure under drought-stress.
Keyphrases
  • climate change
  • room temperature
  • heavy metals
  • human health
  • ionic liquid