87Sr/86Sr and 14C evidence for peccary (Tayassuidae) introduction challenges accepted historical interpretation of the 1657 Ligon map of Barbados.
Christina M GiovasGeorge D KamenovJohn KrigbaumPublished in: PloS one (2019)
Contemporary West Indian biodiversity has been shaped by two millennia of non-native species introductions. Understanding the dynamics of this process and its legacy across extended temporal and spatial scales requires accurate knowledge of introduction timing and the species involved. Richard Ligon's 17th century account and celebrated map of early colonial Barbados records the translocation of several Old World species to the island in the post-contact era, including pigs (Sus scrofa) believed to have been released by passing sailors the century prior. Here we challenge this long-accepted historical narrative, presenting evidence that Ligon's "pigs" were in fact peccaries, a New World continental mammal often confused with wild boars. We document the first recorded instance of non-native peccary (Tayassuidae) on Barbados based on a securely identified mandibular specimen from a historic archaeological context. Results of specimen 87Sr/86Sr and AMS radiocarbon assays, along with newly reported data from Sr isotope environmental analyses, indicate a local origin dating to AD 1645-1670/1780-1800. These data support the presence of living peccary on Barbados some time during the first 175 years of English settlement, which, based on review of historical and archaeological data, most likely arises from 16th century peccary introduction from the Guianas/Trinidad by the Spanish or Portuguese. We argue dimorphic representations of "pigs" on Ligon's map reflect the co-occurrence of peccary and European domestic swine on historic Barbados. Our findings overturn conventional history and provide greater taxonomic and chronological resolution for Caribbean bioinvasion studies, helping to refine our understanding of potential ecological impacts. In addition, the new bioavailable 87Sr/86Sr data for Barbados reported here advance current efforts toward mapping the Caribbean Sr isoscape.