Login / Signup

Silicon Phthalocyanines Axially Disubstituted with Erlotinib toward Small-Molecular-Target-Based Photodynamic Therapy.

Juan-Juan ChenYi-Zhen HuangMei-Ru SongZhi-Hong ZhangJin-Ping Xue
Published in: ChemMedChem (2017)
Small-molecular-target-based photodynamic therapy-a promising targeted anticancer strategy-was developed by conjugating zinc(II) phthalocyanine with a small-molecular-target-based anticancer drug. To prevent self-aggregation and avoid problems of phthalocyanine isomerization, two silicon phthalocyanines di-substituted axially with erlotinib have been synthesized and fully characterized. These conjugates are present in monomeric form in various solvents as well as culture media. Cell-based experiments showed that these conjugates localize in lysosomes and mitochondria, while maintaining high photodynamic activities (IC50 values as low as 8 nm under a light dose of 1.5 J cm-2 ). With erlotinib as the targeting moiety, two conjugates were found to exhibit high specificity for EGFR-overexpressing cancer cells. Various poly(ethylene glycol) (PEG) linker lengths were shown to have an effect on the photophysical/photochemical properties and on in vitro phototoxicity.
Keyphrases