S-Layer Protein for Resistive Switching and Flexible Nonvolatile Memory Device.
Akshay MoudgilNeeti KalyaniGaurav SinsinbarSamaresh DasPrashant MishraPublished in: ACS applied materials & interfaces (2018)
In this work, a flexible resistive switching memory device consisting of S-layer protein (Slp) is demonstrated for the first time. This novel device (Al/Slp/indium tin oxide/polyethylene terephthalte) based on a simple and easy fabrication method is capable of bistable switching to low resistive state (LRS) and high resistive state (HRS). This device exhibits bistable memory behavior with stability and a long retention time (>4 × 103 s), being stable up to a 500 cycle endurance test and with significant HRS/LRS ratio. The device possesses consistent switching performance for more than 100 times bending, corresponding to desired applicability for biocompatible wearable electronics. The memory mechanism is attributed to a trapping/de-trapping process in S-layer protein. These promising results of the flexible memory device could find a way in the wearable storage applications like smart bands and sports equipments' sensors.