Login / Signup

NIR-II fluorescence imaging without intended excitation light.

Aiyan JiHongyue LouJiafeng LiYimeng HaoXiaonan WeiYibin WuWeili ZhaoHao ChenZhen Cheng
Published in: Chemical science (2024)
Nowadays, second near-infrared window (NIR-II) dyes are almost excited by laser diodes, but none of the white light (400-700 nm) excited NIR-II imaging has been studied because of the lack of suitable optical probes. Herein, a novel blue-shifted NIR-II dye, TPA-TQT, has been selected for use in multi-wavelength white light emitting diode (LED) excited NIR-II imaging. This white LED barely caused photo-quenching of the dyes, especially indocyanine green (ICG), whereas the ICG's brightness decreased by 90% under continuous 808 nm laser irradiation. Compared to single-wavelength LED, multi-wavelength LED showed a lower background and similar signal-to-background ratios. This system provided high image resolution to identify blood vessels (103 μm), lymphatic capillaries (129.8 μm), and to monitor hindlimb ischemia-reperfusion and lymphatic inflammation. Furthermore, white LED excited NIR-II fluorescence imaging-guided surgery (FIGS) was successfully performed in 4T1 tumor-bearing mice. Impressively, the lighting LED-based NIR-II FIGS was found to clearly delineate small lesions of metastatic tumors of about ∼350 μm diameter and further was able to guide surgical removal. Overall, multi-wavelength LED-based NIR-II imaging is a promising imaging strategy for tumor delineation and other biomedical applications.
Keyphrases