Unveiling Non-Covalent Interactions in Novel Cooperative Photoredox Systems for Efficient Alkene Oxidation in Water.
Isabel GuerreroClara ViňasFrancesc TeixidorIsabel RomeroPublished in: Molecules (Basel, Switzerland) (2024)
A new cooperative photoredox catalytic system, [Ru II (trpy)(bpy)(H 2 O)][3,3'-Co(8,9,12-Cl 3 -1,2-C 2 B 9 H 8 ) 2 ] 2 , 5 , has been synthesized and fully characterized for the first time. In this system, the photoredox catalyst [3,3'-Co(8,9,12-Cl 3 -1,2-C 2 B 9 H 8 ) 2 ] - [Cl 6 -1] - , a metallacarborane, and the oxidation catalyst [Ru II (trpy)(bpy)(H 2 O)] 2+ , 2 are linked by non-covalent interactions. This compound, along with the one previously synthesized by us, [Ru II (trpy)(bpy)(H 2 O)][(3,3'-Co(1,2-C 2 B 9 H 11 ) 2 ] 2 , 4, are the only examples of cooperative molecular photocatalysts in which the catalyst and photosensitizer are not linked by covalent bonds. Both cooperative systems have proven to be efficient photocatalysts for the oxidation of alkenes in water through Proton Coupled Electron Transfer processes (PCETs). Using 0.05 mol% of catalyst 4 , total conversion values were achieved after 15 min with moderate selectivity for the corresponding epoxides, which decreases with reaction time, along with the TON values. However, with 0.005 mol% of catalyst, the conversion values are lower, but the selectivity and TON values are higher. This occurs simultaneously with an increase in the amount of the corresponding diol for most of the substrates studied. Photocatalyst 4 acts as a photocatalyst in both the epoxidation of alkenes and their hydroxylation in aqueous medium. The hybrid system 5 shows generally higher conversion values at low loads compared to those obtained with 4 for most of the substrates studied. However, the selectivity values for the corresponding epoxides are lower even after 15 min of reaction. This is likely due to the enhanced oxidizing capacity of Co IV in catalyst 5 , resulting from the presence of more electron-withdrawing substituents on the metallacarborane platform.