Quality Evaluation of the Traditional Medicine Majun Mupakhi ELA via Chromatographic Fingerprinting Coupled with UHPLC-DAD-Quadrupole-Orbitrap-MS and the Antioxidant Activity In Vitro.
Ayinuer RehemanHaji Akber AisaQing Ling MaDilaram NijatRahima AbdullaPublished in: Evidence-based complementary and alternative medicine : eCAM (2018)
By merging a high-performance liquid chromatography diode array detector (HPLC-DAD) method with high-performance thin-layer chromatography (HPTLC), an assay was developed for chemical fingerprinting and quantitative analysis of traditional medicine Majun Mupakhi ELA (MME), and constituent compounds were identified using HPLC coupled with UHPLC-DAD-Quadrupole-Orbitrap-MS method. In addition, the antioxidant capacity of MME was assessed based on the ability of components to scavenge radicals using in vitro method. Using a HPLC-DAD method with HPTLC easily validated the chemical fingerprinting results and quantified three characteristic components, namely, gallic acid (1), daidzein (2), and icariin (3), in commercial MMEs. The three compounds presented excellent regression values (R2 = 0.9999) in the ranges of the test and the method recovery was in the range from 100.49% to 100.68%. The fingerprints had 27 common characteristic peaks, of which 13 were verified by rapid UHPLC-DAD-Q-Orbitrap-MS analysis. In vitro antioxidant assays rapidly assessed and contrasted antioxidant activity or the free radical scavenging activity of the main polyphenolic classes in MMEs, and the antioxidant capacity was mostly affected by the presence of gallic acid. Thus, this study establishes a powerful and meaningful approach for MME quality control and for assessing in vitro antioxidant activity.
Keyphrases
- simultaneous determination
- ms ms
- high performance liquid chromatography
- tandem mass spectrometry
- mass spectrometry
- liquid chromatography
- ultra high performance liquid chromatography
- high resolution
- high resolution mass spectrometry
- gas chromatography
- solid phase extraction
- quality control
- multiple sclerosis
- high throughput
- oxidative stress
- computed tomography
- magnetic resonance
- high speed
- quantum dots