CNT-MXene ultralight membranes: fabrication, surface nano/microstructure, 2D-3D stacking architecture, ion-transport mechanism, and potential application as interlayers for Li-O 2 batteries.
Mehdi EstiliShoichi MatsudaLulu JiaNobuyuki SakaiRenzhi MaTohru S SuzukiKohei UosakiPublished in: Nanoscale (2023)
Multiwalled carbon nanotubes (MWCNTs) have shown effectiveness in improving the suitability of MXenes for energy-related applications. However, the ability of individually dispersed MWCNTs to control the structure of MXene-based macrostructures is unclear. Here, the correlation among composition, surface nano- and microstructure, MXenes' stacking order, structural swelling, and Li-ion transport mechanisms and properties in individually dispersed MWCNT-Ti 3 C 2 films was investigated. The compact surface microstructure of MXene film, characterized by prominent wrinkles, is dramatically changed as MWCNTs occupy MXene/MXene edge interfaces. The 2D stacking order is preserved up to 30 wt% MWCNTs despite a significant swelling of ∼400%. Such alignment is completely disrupted at 40 wt%, and a more pronounced surface opening and internal expansion of ∼770% are realized. Both 30 wt% and 40 wt% membranes show stable cycling performance under a significantly higher current density due to faster transport channels. Notably, for the 3D membrane, the overpotential during repeated Li deposition/dissolution reactions is further reduced by ∼50%. Ion-transport mechanisms in the absence and presence of MWCNTs are discussed. Furthermore, ultralight yet continuous hybrid films comprising up to ∼0.027 mg cm -2 Ti 3 C 2 can be prepared using aqueous colloidal dispersions and vacuum filtration for specific applications. The potential application of such ultralight membranes as interlayers for Li-O 2 batteries is briefly examined.