Human IFN-γ immunity to mycobacteria is governed by both IL-12 and IL-23.
Rubén Martínez-BarricarteJanet G MarkleCindy S MaElissa K DeenickNoe Ramirez-AlejoFederico MeleDaniela LatorreSeyed Alireza MahdavianiCaner AytekinDavood MansouriVanessa L BryantFabienne Jabot-HaninCaroline DeswarteAlejandro Nieto-PatlánLaura SuraceGaspard KernerYuval ItanSandra JovicDanielle T AveryNatalie WongGeetha RaoEtienne PatinSatoshi OkadaBenedetta BigioBertrand BoissonFranck RapaportYoann SeeleuthnerMonika SchmidtAydan IkinciogullariFigen DoguGonul TanirPayam TabarsiMohammed Reza BloursazJulia K JosephAvneet HeerXiao-Fei KongMélanie MigaudTomi LazarovFrederic GeissmannBernhard FleckensteinCecilia S Lindestam ArlehamnAlessandro SetteAnne PuelJean François EmileEsther van de VosseLluis Quintana-MurciJames P Di SantoLaurent AbelStéphanie Boisson-DupuisJacinta BustamanteStuart G TangyeFederica SallustoJean Laurent CasanovaPublished in: Science immunology (2019)
Hundreds of patients with autosomal recessive, complete IL-12p40 or IL-12Rβ1 deficiency have been diagnosed over the last 20 years. They typically suffer from invasive mycobacteriosis and, occasionally, from mucocutaneous candidiasis. Susceptibility to these infections is thought to be due to impairments of IL-12-dependent IFN-γ immunity and IL-23-dependent IL-17A/IL-17F immunity, respectively. We report here patients with autosomal recessive, complete IL-12Rβ2 or IL-23R deficiency, lacking responses to IL-12 or IL-23 only, all of whom, unexpectedly, display mycobacteriosis without candidiasis. We show that αβ T, γδ T, B, NK, ILC1, and ILC2 cells from healthy donors preferentially produce IFN-γ in response to IL-12, whereas NKT cells and MAIT cells preferentially produce IFN-γ in response to IL-23. We also show that the development of IFN-γ-producing CD4+ T cells, including, in particular, mycobacterium-specific TH1* cells (CD45RA-CCR6+), is dependent on both IL-12 and IL-23. Last, we show that IL12RB1, IL12RB2, and IL23R have similar frequencies of deleterious variants in the general population. The comparative rarity of symptomatic patients with IL-12Rβ2 or IL-23R deficiency, relative to IL-12Rβ1 deficiency, is, therefore, due to lower clinical penetrance. There are fewer symptomatic IL-23R- and IL-12Rβ2-deficient than IL-12Rβ1-deficient patients, not because these genetic disorders are rarer, but because the isolated absence of IL-12 or IL-23 is, in part, compensated by the other cytokine for the production of IFN-γ, thereby providing some protection against mycobacteria. These experiments of nature show that human IL-12 and IL-23 are both required for optimal IFN-γ-dependent immunity to mycobacteria, both individually and much more so cooperatively.
Keyphrases
- immune response
- dendritic cells
- rheumatoid arthritis
- cell proliferation
- gene expression
- endothelial cells
- autism spectrum disorder
- mycobacterium tuberculosis
- induced apoptosis
- genome wide
- disease activity
- smoking cessation
- intellectual disability
- interstitial lung disease
- endoplasmic reticulum stress
- candida albicans
- induced pluripotent stem cells
- duchenne muscular dystrophy
- nk cells