Effects of aqueous extract of Medicago denticulata against paracetamol-induced hepatotoxicity in rabbits.
Saeed AhmadAlam ZebSanaullah KhanPublished in: Journal of food biochemistry (2021)
Medicago denticulata is commonly used as a leafy vegetable, salad, and food ingredient. In this study, different doses of leaves aqueous extract of M. denticulata (MD) were fed to intoxicated rabbits with paracetamol (100, 200, and 300 mg/kg) for regular 21 days. The aqueous extract was evaluated for phenolic composition using HPLC-DAD. Serum biochemical and hematological parameters were studied to check its activity. The liver was examined histologically and for antioxidant status. Results revealed that paracetamol led to a significant alteration in all the hematological (RBC, WBC, Hb, PLT, and HCT), and serum lipid parameters (TC, HDL, LDL, and TG) while MD at the dose rate of 300 mg/kg had a curative effect on the stabilization of the affected parameters. The high dose of MD ameliorated different antioxidant parameters such as reduced glutathione (GSH), DPPH radical scavenging activity (RSA), and thiobarbituric acid reactive substances (TBARS) of the liver on day 21st of the treatment. Histological studies revealed significant paracetamol-induced toxicity of the liver, whereas the MD had positive effects on induced toxicity. Improvement in all these alterations confirms the curative potential of Medicago denticulata extract. PRACTICAL APPLICATIONS: Paracetamol is a well-known antipyretic and analgesic medicine. However, it has been found to cause toxicity including hepatotoxicity. Synthetic drugs such as statins, antibiotics, and anti-viral are used for curing hepatic diseases also cause severe side effects. Thus, nutraceuticals from plant foods are used to reduce the side effects of different hepatotoxic medicine are continuously researched. This study reported for the first time that aqueous extract of the plant leaves was protective against the hepatotoxicity induced by paracetamol.
Keyphrases
- oxidative stress
- diabetic rats
- drug induced
- anti inflammatory
- high dose
- high glucose
- molecular dynamics
- ionic liquid
- anti inflammatory drugs
- ms ms
- cardiovascular disease
- type diabetes
- mass spectrometry
- low dose
- single cell
- cell death
- sars cov
- cell proliferation
- high resolution
- human health
- endothelial cells
- smoking cessation