Room-Temperature Catalyst Enables Selective Acetone Sensing.
Ines C WeberChang-Ting WangAndreas T GüntnerPublished in: Materials (Basel, Switzerland) (2021)
Catalytic packed bed filters ahead of gas sensors can drastically improve their selectivity, a key challenge in medical, food and environmental applications. Yet, such filters require high operation temperatures (usually some hundreds °C) impeding their integration into low-power (e.g., battery-driven) devices. Here, we reveal room-temperature catalytic filters that facilitate highly selective acetone sensing, a breath marker for body fat burn monitoring. Varying the Pt content between 0-10 mol% during flame spray pyrolysis resulted in Al2O3 nanoparticles decorated with Pt/PtOx clusters with predominantly 5-6 nm size, as revealed by X-ray diffraction and electron microscopy. Most importantly, Pt contents above 3 mol% removed up to 100 ppm methanol, isoprene and ethanol completely already at 40 °C and high relative humidity, while acetone was mostly preserved, as confirmed by mass spectrometry. When combined with an inexpensive, chemo-resistive sensor of flame-made Si/WO3, acetone was detected with high selectivity (≥225) over these interferants next to H2, CO, form-/acetaldehyde and 2-propanol. Such catalytic filters do not require additional heating anymore, and thus are attractive for integration into mobile health care devices to monitor, for instance, lifestyle changes in gyms, hospitals or at home.
Keyphrases
- room temperature
- electron microscopy
- healthcare
- ionic liquid
- mass spectrometry
- gas chromatography
- crystal structure
- photodynamic therapy
- high resolution
- metabolic syndrome
- physical activity
- squamous cell carcinoma
- risk assessment
- human health
- genome wide
- gold nanoparticles
- liquid chromatography
- dna methylation
- high performance liquid chromatography
- computed tomography
- climate change
- tandem mass spectrometry