In situ Biofilm Quantification in Bioelectrochemical Systems by using Optical Coherence Tomography.
Sam D MolenaarTom H J A SleutelsJoao PereiraMatteo IorioCasper BorsjeJulian A ZamudioFrancisco Fabregat-SantiagoCees J N BuismanAnnemiek Ter HeijnePublished in: ChemSusChem (2018)
Detailed studies of microbial growth in bioelectrochemical systems (BESs) are required for their suitable design and operation. Here, we report the use of optical coherence tomography (OCT) as a tool for in situ and noninvasive quantification of biofilm growth on electrodes (bioanodes). An experimental platform is designed and described in which transparent electrodes are used to allow real-time, 3D biofilm imaging. The accuracy and precision of the developed method is assessed by relating the OCT results to well-established standards for biofilm quantification (chemical oxygen demand (COD) and total N content) and show high correspondence to these standards. Biofilm thickness observed by OCT ranged between 3 and 90 μm for experimental durations ranging from 1 to 24 days. This translated to growth yields between 38 and 42 mgCODbiomass gCODacetate -1 at an anode potential of -0.35 V versus Ag/AgCl. Time-lapse observations of an experimental run performed in duplicate show high reproducibility in obtained microbial growth yield by the developed method. As such, we identify OCT as a powerful tool for conducting in-depth characterizations of microbial growth dynamics in BESs. Additionally, the presented platform allows concomitant application of this method with various optical and electrochemical techniques.
Keyphrases