Login / Signup

Design and Synthesis of Diphosphine Ligands Based on the Chiral Biindolyl Scaffold and Their Application in Transition-Metal Catalysis.

Fuhao ZhangGen-Qiang ChenXumu Zhang
Published in: Organic letters (2024)
An extremely concise, scalable, and stereoselective synthesis of a privileged chiral skeleton based on 2,2'-biindolyl and commercially available chiral building blocks has been developed. This novel skeleton allows for easy access to a range of bisphosphine ligands (decagram scale, up to 58% total yield, only three steps). The synthetic method is characterized by an efficient central-to-axial chirality transfer strategy. In particular, the superior performance of the ligands has been demonstrated in diverse reactions, including several asymmetric hydrogenations, asymmetric conjugate reductions, and cycloisomerization reactions, indicating a great potential for the application of the newly developed chiral backbones in further modifications and exploration of novel chiral ligands and catalysts.
Keyphrases
  • capillary electrophoresis
  • transition metal
  • ionic liquid
  • highly efficient
  • climate change
  • cancer therapy
  • drug delivery
  • tissue engineering