Login / Signup

Reversible Transformation between a [PdL2 ]2+ "Figure-of-Eight" Complex and a [Pd2 L2 ]4+ Dimer: Switching On and Off Self-Recognition.

Dan PrestonPaul E Kruger
Published in: Chemistry (Weinheim an der Bergstrasse, Germany) (2019)
Structural changes to metallosupramolecular assemblies resulting in the release or uptake of guests are currently well established, whereas transformations turning on and off specific self-recognition are far less developed. We report a novel ligand (2,6-bis(1-(3-pyridin-4-yl)phenyl-1H-1,2,3-triazol-4-yl)pyridine) possessing a tridentate central metal-binding site flanked by two pendant pyridyl arms. In a 2:1 ratio with PdII metal ions, a spiro-type [PdL2 ]2+ "Figure-of-eight" complex forms with the central tridentate binding pocket unoccupied. The introduction of an additional one equivalent of PdII metal ion results in the conversion to a dimeric [Pd2 L2 ]4+ molecule with the tridentate pocket occupied. There is site-specific self-recognition between dimers in solution with strong NOE peaks between adjacent molecules. The self-recognition between dimers can be turned off in two ways: firstly, adding another equivalent of PdII metal ion brings about binding to the previously uncoordinated pyridyl arms that are key to the self-recognition event, and; secondly, addition of sufficient ligand to return the stoichiometry to 2:1 regenerates the [PdL2 ]2+ complex. Hence, the self-recognition event can be turned on or off through simple variation of L:PdII stoichiometry.
Keyphrases
  • quantum dots