Cost analysis of implementing HIV drug resistance testing in Kenya: a case study of a service delivery site at a tertiary level hospital in Kenya.
Rachael W GachogoDaniel N MwaiFrank G OnyambuPublished in: F1000Research (2020)
Background: HIV drug resistance (HIVDR) threatens progress achieved in response to the HIV epidemic. Understanding the costs of implementing HIVDR testing programs for patient management and surveillance in resource-limited settings is critical in optimizing resource allocation. Here, we estimate the unit cost of HIVDR testing and identify major cost drivers while documenting challenges and lessons learnt in implementation of HIVDR testing at a tertiary level hospital in Kenya. Methods: We employed a mixed costing approach to estimate the costs associated with performing a HIVDR test from the provider's perspective. Data collection involved a time and motion study of laboratory procedures and interviewing laboratory personnel and the management personnel. Cost analysis was based on estimated 1000 HIVDR tests per year. Data entry and analysis were done using Microsoft Excel and costs converted to US dollars (2019). Results: The estimated unit cost for a HIVDR test was $271.78 per test. The main cost drivers included capital ($102.42, 37.68%) and reagents (101.50, 37.35%). Other costs included: personnel ($46.81, 17.22%), utilities ($14.69, 5.41%), equipment maintenance costs ($2.37, 0.87%) and quality assurance program ($4, 1.47%). Costs in relation to specific laboratory processes were as follows: sample collection ($2.41, 0.89%), RNA extraction ($22.79, 8.38%), amplification ($56.14, 20.66%), gel electrophoresis ($10.34, 3.80%), sequencing ($160.94, 59.22%), and sequence analysis ($19.16, 7.05%). A user-initiated modification of halving reagent volumes for some laboratory processes (amplification and sequencing) reduced the unit cost for a HIVDR test to $233.81 (13.97%) reduction. Conclusions: Capital expenditure and reagents remain the most expensive components of HIVDR testing. This cost is bound to change as the sequencing platform is utilized towards maximum capacity or leveraged for use with other tests. Cost saving in offering HIVDR testing services is also possible through reagent volume reduction without compromising on the quality of test results.
Keyphrases
- healthcare
- antiretroviral therapy
- hiv infected
- human immunodeficiency virus
- primary care
- quality improvement
- hiv positive
- hiv testing
- hepatitis c virus
- hiv aids
- single cell
- mental health
- electronic health record
- machine learning
- men who have sex with men
- nucleic acid
- case report
- artificial intelligence
- hyaluronic acid
- deep learning