Liquid-Exfoliated Mesostructured Collagen from the Bovine Achilles Tendon as Building Blocks of Collagen Membranes.
Ying PeiKathryn E JordanNing XiangRachael N ParkerXuan MuLuan ZhangZhibin FengYing ChenChunmei LiChengchen GuoKeyong TangDavid Lee KaplanPublished in: ACS applied materials & interfaces (2021)
Mesoscaled assemblies are organized in native collagen tissues to achieve remarkable and diverse performance and functions. In this work, a facile, low-cost, and controllable liquid exfoliation method was applied to directly extract these collagen mesostructures from bovine Achilles tendons using a sodium hydroxide (NaOH)/urea aqueous system with freeze-thaw cycles and sonication. A series of collagen fibrils with diameters of 26-230 nm were harvested using this process, and in situ observations under polarizing microscopy (POM) and using molecular dynamics simulations revealed the influence of the NaOH/urea system on the tendon collagen. FTIR and XRD results confirmed that these collagen fibrils preserved typical structural characteristics of type I collagen. These isolated collagen fibrils were then utilized as building blocks to fabricate free-standing collagen membranes, which exhibited good stability in solvents and outstanding mechanical properties and transparency, with potential for utility in optical and electronic sensors. Moreover, in vitro and vivo evaluations demonstrated that these new resulting collagen membranes had good cytocompatibility, biocompatibility, and degradability for potential applications in biomedicine. This work provides a new approach for collagen processing by liquid exfoliation with utility for the formation of robust collagen materials that consist of native collagen mesostructures as building blocks.